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LETTER TO THE EDITOR 

Quantum transport in a three-dimensional wire 

M C Payne and G E Engel 
Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, U K  

Received 27 November 1989 

Abstract. Electrostatic and electrochemical potentials are calculated for a current carrying 
cylindrical wire that contains a single impurity positioned on its axis. It is found that long- 
range electric fields are present in the region around the impurity despite the presence of 
metallic screening and that the direction of the electric field alternates along the axis of the 
wire. 

Advances in semiconductor fabrication techniques have made it possible to fabricate 
devices in which the electronic mean free path exceeds the dimensions of the device so 
that transport through the device is ballistic. Experiments on systems that contain narrow 
one-dimensional channels have shown that the conductance of such devices is quantised 
in units of 2e2/h  (van Wees et a1 1988, Wharam et a1 1988). In a previous publication 
(Payne 1989, hereafter referred to as I) the distribution of electrostatic and elec- 
trochemical potentials in a variety of one-dimensional devices was analysed (for a 
discussion of electrochemical and electrostatic potentials and their measurement see 
Landauer 1989). One-dimensional systems are particularly simple to study because 
different regions of the device are separated by well defined interfaces. The changes in 
the electrochemical potentials occur at the interfaces and the changes in the electrostatic 
potential occur within a screening length of the interfaces. In two- and three-dimensional 
devices there are no clearly defined interfaces between different regions of the device. 
In this letter we consider a three-dimensional wire that contains a single impurity and 
calculate the electrochemical and electrostatic potentials in the system. It is well known 
that the resistance of a wire at zero temperature results from the scattering of electrons 
from impurities. A simple model might assume that the voltage drops in such a device 
occur over regions of the size of the screening length around each impurity since the 
electric fields should be screened over this length-scale. However there is an obvious 
flaw in this model. One path through the device might pass through some of the impurities 
while another path may only pass through regions of perfect conductor. From the 
analysis presented in I it is easy to understand the presence of a voltage drop along a 
path that passes through impurities since it was shown that voltages are generated in 
regions of the device in which carriers are reflected. However, as it is expected that the 
electric fields around each of the impurities should be screened there should be no 
electric field in the regions of the device away from the impurities. If this were the case 
there would be no voltage drop along any path that avoided all the impurities in the wire. 
However, the voltage drop between the ends of the wire must be independent of the 
path taken through the wire so the previous argument must be incorrect. In this letter this 
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Figure 1. Schematic illustration of the cylindrical wire showing the position of the impurity 
on  the axis of the wire and the four lines a ,  b ,  c and d along which the electrochemical 
potentials are  plotted in figure 2. 

problem is investigated by calculating the electrochemical and electrostatic potentials in 
a cylindrically symmetric conductor that contains a single impurity positioned on its axis. 
It is shown that the scattering of the electrons by the impurity gives rise to long-range 
electric fields despite the metallic screening in the wire. These long-range electric fields 
explain the presence of a voltage drop along a path that avoids all the impurities in the 
wire. It is found that the electric field in the wire is not uniform; the magnitude of the 
electric field at the position of the impurity is significantly enhanced and the direction of 
the electric field alternates along the axis of the wire. These results are consistent with 
Landauer’s model of residual resistivity dipoles (Landauer 1957). 

The simplifications and approximations used in this letter are essentially those 
applied in the analysis of the one-dimensional system studied in I. Different elec- 
trochemical potentials will be assigned to left- and right-propagating electrons as must 
be the case for a current-carrying system; the magnitude of the elecrochemical potential 
at a point will be taken to be the value of the Fermi energy that would produce the same 
electron density as actually exists at the point; screening will be described by a simple 
Thomas-Fermi model. Quantum interference effects which give rise to oscillations in 
the electronic density and consequent oscillations in  the electrochemical potentials 
(Buttiker 1989) will be ignored: only the average of the electron density over distances 
of the order of the Fermi wavelength will be considered. It will be assumed that the 
impurity in the wire completely reflects the electronic wavefunctions over an area of 
nu2. A number of these simplifications can be trivially removed. It is straightforward to 
consider an impurity that partially transmits the incident electrons and it is relatively 
straightforward to consider alternative positions of the impurity. It is simple to apply a 
similar analysis to two-dimensional systems. Quantum interference effects and a more 
detailed description of the electronic screening will be considered in future work. 

Figure 1 illustrates the system that will be studied. It will be assumed that a perfect 
battery as defined in I is attached to the system. The battery controls the occupancies 
of the outgoing electronic states so that the electrochemical potential for electrons 
propagating to the right far to the left of the impurity is ,ul and the electrochemical 
potential for carriers propagating to the left far to the right of the impurity is p 2 .  The 
battery voltage is p ,  - p 2 .  All the electronic states that have energies less than p 2  are 
occupied. Hence, carriers that have energies less than p 2  give no contribution to the 
current. 

The potentials along the lines labelled a, b, c and d in figure 1 are shown in figures 
2(a-d). Figure 2(a) shows the potentials along the axis of the wire. The effect of the 
impurity can be clearly seen by the step change in the electrochemical potentials at the 
position of the impurity. The step changes in the electrochemical potentials at this point 
result from the perfect reflection of the electrons in the energy range between p l  and p2 
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Figure 2. The electrostatic potential and the electrochemical potentials in the current- 
carrying wire illustrated schematically in figure 1.  The electrostatic potential, rp, is shown by 
the full lines, the electrochemical potential for carriers moving to the right, pR,  is shown by 
the short-dashed lines and the electrochemical potential for carriers moving to the left, pL, 
is shown by the chain lines. The long-dashed lines show the average electrostatic potential 
in the wire. The potentials are plotted along the lines a ,  b ,  c and d shown in figure 1. The 
wire is connected between the terminals of a perfect battery. The negative terminal of the 
battery is connected to the left edge of the left-hand lead and the positive terminal of the 
battery is connected to the right edge of the right-hand lead. p l  is the electrochemical 
potential imposed by the batteryon the carriers moving to the right in the left-hand lead and 
p 2  is the electrochemical potential imposed by the battery on the carriers moving to the left 
in the right-hand lead. The voltage of the battery, V ,  is equal t o p  I - p2.  

incident on the impurity from the left and the holes in this energy range incident on 
the impurity from the right. The step changes in the electrochemical potentials are 
reminiscent of the changes in the electrochemical potentials observed in the one-dimen- 
sional systems studied in I. However, in this three-dimensional system the electro- 
chemical potentials are not constant away from the point where the reflection of the 
carriers takes place. The reflected electron and hole wavepackets are localised in a 
transverse area nu2 at the position of the impurity. The transverse wavefunctions at the 
position of the impurity contain a wide range of Fourier components which have different 
group velocities. Hence the reflected electron and hole wavepackets will spread in the 
lateral direction with time as they propagate away from the impurity. The actual form 
of the reflected wavepackets is quite complicated and to simplify the following analysis 
it will be assumed that the reflected electron and hole wavepackets spread over cones 
of half-angle a. The curvature of the wavefronts of the reflected electron and hole 
wavepackets will be ignored and it will be assumed that there are no changes in the 
wavepackets once they have spread over the cross-section of the wire. It will also be 
assumed that the density of the reflected electrons and holes is uniform across each cross- 
section of the cone. The assumed form of the reflected electron and hole wavepackets 
is shown in figure 3. 



1358 Letter to the Editor 

Ref Lected 
e Let tmns 

Figure3. Schematic illustration of the lateral spreadingof the electron and hole wavepackets 
reflected from the impurity. 

At the position of the impurity the reflected electrons and holes are spatially localised 
in the transverse direction. The wavepackets spread laterally as the reflected electrons 
and holes propagate away from the impurity and so the density of the reflected electrons 
and holes is not uniform away from the impurity. As the magnitudes of the electro- 
chemical potentials depend on the local electron densities the electrochemical potentials 
are not constant away from the impurity. With the model for the reflected wavepackets 
introduced above the excess electron and hole densities along the axis of the wire are 
proportional to ( l / d  where d is the distance away from the impurity. The 
lateral spreading of the wavepackets will continue until the density of reflected electrons 
and holes is uniform across the wire. This occurs at distances W/tan(a) along the wire 
from the position of the impurity, where W is the width of the wire. Beyond these points 
the density of reflected electrons and holes is independent of the position in the wire. 

The effect of the lateral spreading of the reflected electrons and holes on the elec- 
trochemical potentials can be seen in figures 2(b-d). These figures show the variation of 
the electrochemical and electrostatic potentials off the axis of the wire. There is no 
change in the magnitude of the electrochemical potentials at the points closest to the 
impurity along the lines b, c and d because these points are outside the cones formed by 
the reflected electron and hole wavepackets. The electron density off the axis of the wire 
only changes when the reflected electrons and holes have propagated some distance 
away from the impurity and their wavepackets have spread laterally. Along lines b and 
c there are step changes in the electrochemical potentials at the points where the cones 
formed by the reflected electron and hole wavepackets cut the lines. The step changes 
in the electrochemical potentials are followed by smooth changes in the potentials. The 
smooth variations in the electrochemical potentials occur because the densities of the 
reflected electrons and holes decrease as the wavepackets continue to spread laterally 
away from the impurity. The changes in the electrochemical potentials continue until 
the reflected electron and hole wavepackets have spread across the whole cross-section 
of the wire. In the case of the electrochemical potentials on the edge of the wire shown 
in figure 2 ( d )  there are no smooth variations in the electrochemical potentials because 
the step changes in these potentials occur at the points where the lateral spreading of 
the reflected wavepackets is complete. 

The electrochemical potentials beyond the points where the reflected carriers have 
completely spread across the wire are p ,  - {[l  - ( U / W ) ~ ]  ( p ,  - p 2 ) }  for left-propagating 
electrons to the left of the impurity and p2  + {[l  - (u /w) * ] (p1  - p 2 ) }  for the right- 
propagating electrons to the right of the impurity. These potentials become p2  and pI 
respectively as the cross-section of the wire becomes much larger than the cross-section 
of the impurity. These are the values of the electrochemical potentials that are expected 
for a perfect conductor where the left- and right-propagating carriers are not scattered 
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as they propagate through the system. Even though the wire contains a scatterer the 
system behaves as a perfect conductor in this limit because a negligible fraction of the 
current-carrying electrons are scattered as they propagate through the wire. 

The electrostatic potential in the wire will now be considered. It is simple to calculate 
the value of the electrostatic potential in any region in which there is no change in the 
electrochemical potentials and so these regions will be considered first. In any region in 
which the electrochemical potentials are constant the value of the electrostatic potential 
beyond a few screening lengths from the edge of the region is determined by the condition 
of local charge neutrality. The electrostatic potential must be constant within any such 
region because this is the only self-consistent steady-state solution of the electrostatic 
and current transport equations. From the definitions of the electrochemical potentials 
adopted in this paper this implies that in regions in which the electrochemical potentials 
do not vary with position the electrostatic potential is a constant energy below the 
average of the electrochemical potentials for the left- and right-propagating carriers. If 
this fixed energy is ( the electrostatic potential in the region far to the left of the impurity 
lies at p ,  - {[1 - ( u / w ) ~ ]  ( p ,  - p2)/2} - and the electrostatic potential far to the right 
of the impurity lies at p2  + {[1 - ( U / W > ~ ]  ( p l  - p2)/2} - c. The difference in the elec- 
trostatic potential between the ends of the wire is ( p l  - p 2 )  ( u / w ) ~ ,  which is the same as 
the differences in the electrochemical potentials between the ends of the wire. As the 
cross-section of the wire becomes much larger than the cross-section of the impurity the 
scattering from the impurity becomes negligible, the voltage drop along the wire goes 
to zero and the wire behaves as a perfect conductor. 

The electrochemical potentials are constant in the region around the impurity outside 
the cones formed by the reflected electron and hole wavepackets. In this region the 
electrostatic potential lies at ( p l  + p2) /2  - c, which is half-way between theelectrostatic 
potentials at the ends of the wire. 

Finally, the electrostatic potential in the conical regions where the reflected electron 
and hole wavepackets spread laterally must be calculated. The reflected carriers generate 
non-uniform change densities in these regions and the electric fields generated by these 
charge densities will be screened. A full analysis of the screening will be presented in a 
future publication and only a qualitative description of the screening will be presented 
here. 

It is commonly assumed that static electric fields in metals are screened within a 
screening length A .  This is true in the case of electric fields generated by a point charge 
and the electric fields generated by a uniform charge density in some region of a metal. 
In the former case the electric field generated by the point charge is screened within a 
few screening lengths. In the latter case a dipole layer whose width is of the order of the 
screening length surrounds the region of constant charge density. The electric field is 
non-zero within the dipole layer and gives a uniform shift between the electrostatic 
potentials inside and outside the dipole layer. The shift in the electrostatic potential 
inside the region produces a constant screening charge density that effectively cancels 
the original charge density. The region becomes charge neutral so the electric field inside 
the region is zero. For the system studied in this letter it is easier to understand the 
behaviour of the electrostatic potential by writing the potential in terms of the unscreened 
charge density generated by the reflected electrons and holes. In the Thomas-Fermi 
screening model the screened charge density at wavevector q ,  pscr(q) ,  is given by 

where punscr(q) is the unscreened charge density at wavevector q and A is the Thomas- 
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Fermi screening wavevector. Hence the electrostatic potential at wavevector q,  q (q ) ,  is 

Equation (1) shows that only at q = 0 is the screened charge density strictly zero. From 
equation (2) it can be seen that when the unscreened charge density only contains Fourier 
components that have wavevectors much smaller than the Thomas-Fermi wavevector 
the screened potential is approximately 1/&,h2 times the unscreened charge density. 

Equation (2) shows that the electrostatic potential must vary continuously in any 
region in which the unscreened charge density is non-uniform. Hence in the case of the 
system studied in this letter the electric field surrounding the impurity must extend over 
the whole of the conical regions defined by the reflected electron and hole wavepackets. 
As the electric field extends over the whole of these regions there are no paths through 
the wire along which the electric field is zero everywhere, and hence there are no paths 
through the wire along which the voltage drop is zero. 

The magnitude of the electrostatic potential in the wire is shown by the full lines in 
figures 2(a-d). These figures show a number of surprising features. The electric field 
reverses direction two times along the axis of the wire. An electron propagating to the 
right along the axis of the wire initially experiences an electric field directed against the 
direction of the current. Then it experiences an electric field in the direction of the 
current and finally it experiences an electric field directed against the current. This 
behaviour can be understood as follows. As the electron approaches the impurity it 
experiences a Coulomb repulsion from the electrons that have been reflected from the 
impurity. In the region immediately around the impurity the electric field points in the 
direction of the current but the magnitude of the electric field is considerably enhanced 
over the value that would be calculated if it was assumed that the voltage applied to the 
wire were dropped uniformly along the length of the wire. Finally an electron on the 
axis of the wire to the right of the impurity experiences an electric field directed in the 
opposite direction to the current due to the attraction between the electron and the 
excess holes tha; have been reflected from the impurity. The variations in the electrostatic 
potential that give rise to the curious behaviour of the electric field are simply the 
response of the electronic system which attempts to screen the electric fields generated 
by the reflected electrons and holes. The reflected electrons generate a negative charge 
density to the left of the impurity and the reflected holes generate a positive charge 
density to the right of the impurity. The screening acts to reduce the total charge density 
but in the Thomas-Fermi model the screened charge density must be of the same sign 
as the unscreened charge density. This implies that even after screening there is excess 
negative charge to the left of the impurity and excess positive charge to the right of the 
impurity which produces the electrostatic potential shown in figure 2. 

The behaviour of a wire that contains a number of impurities will depend on the ratio 
of the separation between the impurities to the width of the wire. If the separation of 
the impurities is much larger than the width of the wire a distribution of electric fields 
similar to those described in this letter will exist around each impurity, the exact field 
distribution around each impurity depending on its position on the cross-section of the 
wire, and there will be regions of constant potential between the impurities. When the 
separation of the impurities becomes much less than the width of the wire there will be 
no field-free regions in the wire since the electric fields surrounding each impurity will 
overlap. However, even in this case the magnitude of the electric field in the wire will 
be non-uniform along the length of the wire. 
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